Protecting Privacy Using k-Anonymity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protecting Privacy Using k-Anonymity

Objective: There is increasing pressure to share health information and even make it publicly availab However, such disclosures of personal health information raise serious privacy concerns. To alleviate such concerns, it is possible to anonymize the data before disclosure. One popular anonymization approach is kanonymity. There have been no evaluations of the actual re-identification probabili...

متن کامل

k-Anonymity: A Model for Protecting Privacy

Consider a data holder, such as a hospital or a bank, that has a privately held collection of person-specific, field structured data. Suppose the data holder wants to share a version of the data with researchers. How can a data holder release a version of its private data with scientific guarantees that the individuals who are the subjects of the data cannot be re-identified while the data rema...

متن کامل

Protecting Privacy by Multi-dimensional K-anonymity

Privacy protection for incremental data has a great effect on data availability and practicality. Kanonymity is an important approach to protect data privacy in data publishing scenario. However, it is a NP-hard problem for optimal k-anonymity on dataset with multiple attributes. Most partitions in k-anonymity at present are single-dimensional. Now research on k-anonymity mainly focuses on gett...

متن کامل

A Customizable k-Anonymity Model for Protecting Location Privacy

Continued advances in mobile networks and positioning technologies have created a strong market push for location-based services (LBSs). Examples include location-aware emergency services, location based service advertisement, and location sensitive billing. One of the big challenges in wide deployment of LBS systems is the privacy-preserving management of location-based data. Without safeguard...

متن کامل

Multi-dimensional k-anonymity Based on Mapping for Protecting Privacy

Data release has privacy disclosure risk if not taking any protection policy. Although attributes that clearly identify individuals, such as Name, Identity Number, are generally removed or decrypted, attackers can still link these databases with other released database on attributes (Quasi-identifiers) to re-identify individual’s private information. K-anonymity is a significant method for priv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Medical Informatics Association

سال: 2008

ISSN: 1527-974X,1067-5027

DOI: 10.1197/jamia.m2716